
Plugin Developer Guide

Contents

Extending Oxygen XML Editor with Plugins...3
Introduction...3

General configuration of an Oxygen XML Editor plugin...3

Types of plugins..4

General Plugin...4

Selection Plugin...4

Document Plugin...5

Custom Protocol Plugin..5

Resource Locking Custom Protocol Plugin..5

Components Validation Plugin..6

Workspace Access Plugin..7

Open Redirect Plugin..8

Targeted URL Stream Handler Plugin..8

Lock Handler Factory Plugin..10

How to...10

How to Write a CMS Integration Plugin...10

How to Write A Custom Protocol Plugin..14

Installation...15

Example - A Selection Plugin...15

Table of Contents | 2

Extending Oxygen XML Editor with Plugins

This chapter explains how to write and install a plugin of the Oxygen XML Editor . It treats only the standalone version,
as the Eclipse plugin version can be extended with other plugins following the rules of the Eclipse platform.

Introduction
Oxygen XML Editor defines a couple of extension points to allow providing custom functionality via plugins. The
plugin support includes the following types of plugins:

• General plugins
• Selection plugins
• Document plugins
• Custom protocol plugins
• Resource locking custom protocol plugins
• Components validation plugins
• Workspace access plugins
• Open redirect plugins

A selection plugin can be applied to both an XML document and a non-XML document. Other types of plugins can be
applied only to XML documents.

A components validation plugin and a workspace access plugin are not connected with one document type, they have
access to some resources of the application workspace used by all opened documents.

In order to develop a plugin a Java development environment must be installed. Apart from any library that the specific
plugin requires, the file oxygen.jar is necessary for plugin compilation. Also an Oxygen XML Editor installation
is helpful for testing the deployment and plugin the functionality.

General configuration of an Oxygen XML Editor plugin
The Oxygen XML Editor functionality can be extended with plugins that implement a clearly specified API. A plugin
includes at least a descriptor file which is an XML file called plugin.xml and two Java classes that extend
ro.sync.exml.plugin.Plugin and ro.sync.exml.plugin.PluginExtension. Most plugins work
only in the Text mode of the XML editor panel while others work at the workspace level. For extending the Author
mode of the XML editor panel, see Author Developer Guide for the custom Author actions API.

On the Oxygen XML Editor website there is a plugin development kit with some sample plugins (source code and
compiled code) and the Javadoc API necessary for developing custom plugins.

The minimal implementation of a plugin must provide:

• a Java class that extends the ro.sync.exml.plugin.Plugin class
• a Java class that implements the ro.sync.exml.plugin.PluginExtension interface
• a plugin descriptor file called plugin.xml

A ro.sync.exml.plugin.PluginDescriptor object is passed to the constructor of the subclass of the
ro.sync.exml.plugin.Plugin class. It contains the following data items about the plugin:

• basedir - File object - the base directory of the plugin.
• description - String object - the description of the plugin.
• name - String object - the name of the plugin.
• vendor - String object - the vendor name of the plugin.
• version - String object - the plugin version.

Extending Oxygen XML Editor with Plugins | 3

http://www.oxygenxml.com/InstData/Editor/Plugins/javadoc/ro/sync/exml/plugin/Plugin.html
http://www.oxygenxml.com/InstData/Editor/Plugins/javadoc/ro/sync/exml/plugin/PluginExtension.html
http://www.oxygenxml.com/InstData/Editor/Plugins/OxygenPluginsDevelopmentKit.zip

The ro.sync.exml.plugin.PluginDescriptor fields are filled with information from the plugin descriptor
file.

The plugin descriptor is an XML file that defines how the plugin is integrated in Oxygen XML Editor and what libraries
are loaded. The structure of the plugin descriptor file is fully described in a DTD grammar located in
OXYGEN_INSTALLATION_FOLDER/plugins/plugin.dtd. Here is a sample plugin descriptor used by the
Capitalize Lines sample plugin:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin
 name="Capitalize Lines"
 description="Capitalize the first character on each line"
 version="1.0.0"
 vendor="SyncRO"
 class="ro.sync.sample.plugin.caplines.CapLinesPlugin">
 <runtime>
 <library name="lib/caplines.jar"/>
 </runtime>
 <extension type="selectionProcessor"
 class="ro.sync.sample.plugin.caplines.CapLinesPluginExtension"
keyboardShortcut="ctrl shift EQUALS"/>
</plugin>

If your plugin is of type Selection, Document or General, and thus contributes an action either to the contextual menu
or to the main menu, then you can assign a keyboard shortcut for it. You can use the keyboardShortcut attribute
for each extension element to specify the desired shortcut.

Tip: To compose string representations of the desired shortcut keys you can go to the Oxygen XML Editor
Menu Shortcut Keys preferences page, press Edit on any action, press the desired key sequence and use the
representation which appears in the edit dialog.

Types of plugins

General Plugin
This plugin type allows the developer to invoke custom code and to interact with the application workspace.

This plugin is the most general plugin type. It provides a limited API:

• The interface GeneralPluginExtension - Intended for general-purpose plugins, kind of external tools but
triggered from the Plugins menu. The implementing classes must provide the method
process(GeneralPluginContext) which must provide the plugin processing. This method takes as a
parameter a GeneralPluginContext object.

• The class GeneralPluginContext - Represents the context in which the general plugin extension does its
processing. The method getPluginWorkspace() allows you access to the application workspace.

Selection Plugin
A selection plugin can be applied to both an XML document and a non-XML document. It works as follows: the user
makes a selection in the editor, displays the contextual menu, and selects from the Plugins submenu the item corresponding
to the plugin.

This plugin type provides the following API:

• The interface SelectionPluginExtension - The context containing the selected text is passed to the extension
and the processed result is going to replace the initial selection. The process(GeneralPluginContext)
method must return a SelectionPluginResult object which contains the result of the processing. The String
value returned by the SelectionPluginResult object can include editor variables like ${caret} and ${selection}.

• The SelectionPluginContext object represents the context. It provides four methods:

Extending Oxygen XML Editor with Plugins | 4

http://www.oxygenxml.com/InstData/Editor/Plugins/javadoc/ro/sync/exml/plugin/PluginDescriptor.html

getSelection() - Returns a String that is the current selection of text.•
• getFrame() - Returns a Frame that is the currently editing frame.
• getPluginWorkspace() - Returns access to the application workspace.
• getDocumentURL() - Returns the URL of the current edited document.

Document Plugin
This plugin type can be applied only to an XML document. It can modify the current document which is received as
callback parameter.

The plugin is started by selecting the corresponding menu item from the contextual menu of the XML editor (Text
mode), Plugins submenu. It provides the following API:

• The interface DocumentPluginExtension - Receives the context object containing the current document in
order to be processed. The process(GeneralPluginContext) method can return a
DocumentPluginResult object containing a new document.

• The DocumentPluginContext object represents the context. It provides three methods:

• getDocument() - Returns a javax.swing.text.Document object that represents the current document.
• getFrame() - Returns a java.awt.Frame object that represents the currently editing frame.
• getPluginWorkspace() - Returns access to the application workspace.

Custom Protocol Plugin
This type of plugins allows the developer to work with a custom designed protocol for retrieving and storing files.

It provides the following API:

• The interface URLStreamHandlerPluginExtension - There is one method that must be implemented:

• getURLStreamHandler(String protocol) - It takes as an argument the name of the protocol and
returns a URLStreamHandler object, or null if there is no URL handler for the specified protocol.

• With the help of the URLChooserPluginExtension2 interface, it is possible to write your own dialog that
works with the custom protocol. This interface provides two methods:

• chooseURLs(StandalonePluginWorkspace workspaceAccess) - Returns a URL[] object that
contains the URLs the user decided to open with the custom protocol. You can invoke your own URL chooser
dialog here and then return the chosen URLs having your own custom protocol. You have access to the application
workspace.

• getMenuName() - Returns a String object that is the name of the entry added in the File menu.

• With the help of the URLChooserToolbarExtension interface, it is possible to provide a toolbar entry which
is used for launching the custom URLs chooser from the URLChooserPluginExtension implementation. This
interface provides two methods:

• getToolbarIcon() - Returns the javax.swing.Icon image used on the toolbar.
• getToolbarTooltip() - Returns a String that is the tooltip used on the toolbar button.

Resource Locking Custom Protocol Plugin
This plugin type allows the developer to work with a custom designed protocol for retrieving and storing files. It can
lock a resource on opening it in Oxygen XML Editor . This type of plugin extends the custom protocol plugin type with
resource locking support.

Such a plugin provides the following API:

• The interface URLStreamHandlerWithLockPluginExtension - The plugin receives callbacks following
the simple protocol for resource locking and unlocking imposed by Oxygen XML Editor .

There are two additional methods that must be implemented:

Extending Oxygen XML Editor with Plugins | 5

• getLockHandler() - Returns a LockHandler implementation class with the implementation of the lock
specific methods from the plugin.

• isSupported(String protocol) - Returns a boolean that is true if the plugin accepts to manage
locking for a certain URL protocol scheme like ftp, http, https, or customName.

Components Validation Plugin
This plugin type allows the developer to make customization of the editor menus, toolbars, and some other components
by allowing or filtering them from the user interface.

This plugin provides the following API:

• The interface ComponentsValidatorPluginExtension - There is one method that must be implemented:

• getComponentsValidator() - Returns a ro.sync.exml.ComponentsValidator implementation
class used for validating the menus, toolbars, and their actions.

• The interface ComponentsValidator provides methods to filter various features from being added to the
application GUI:

• validateMenuOrTaggedAction(String[] menuOrActionPath) - Checks if a menu or a tag action
from a menu is allowed and returns a boolean value. A tag is used to uniquely identifying an action. The
String[] argument is the tag of the menu / action and the tags of its parent menus if any.

• validateToolbarTaggedAction(String[] toolbarOrAction) - Checks if an action from a
toolbar is allowed and returns a boolean value. The String[] argument is the tag of the action from a toolbar
and the tag of its parent toolbar if any.

• validateComponent(String key) - Checks if the given component is allowed and returns a boolean
value. The String argument is the tag identifying the component. You can remove toolbars entirely using this
callback.

• validateAccelAction(String category, String tag) - Checks if the given accelerator action
is allowed to appear in the GUI and returns a boolean value. An accelerator action can be uniquely identified
so it will be removed both from toolbars or menus. The first argument represents the action category, the second
is the tag of the action.

• validateContentType(String contentType) - Checks if the given content type is allowed and
returns a boolean value. The String argument represents the content type. You can instruct the application
to ignore content types like text / xsl or text / xquery and the application will no longer be able to recognize them.

• validateOptionPane(String optionPaneKey) - Checks if the given options page can be added in
the preferences option tree and returns a boolean value. The String argument is the option pane key.

• validateOption(String optionKey) - Checks if the given option can be added in the option page and
returns a boolean value. The String argument is the option key. This method is mostly used for internal use
and it is not called for each option in a preferences page.

• validateLibrary(String library) - Checks if the given library is allowed to appear listed in the
About dialog and returns a boolean value. The String argument is the library. This method is mostly for
internal use.

• validateNewEditorTemplate(EditorTemplate editorTemplate) - Checks if the given template
for a new editor is allowed and returns a boolean value. The EditorTemplate argument is the editor
template. An EditorTemplate is used to create an editor for a given extension. You can thus filter what
appears in the New dialog list.

• isDebuggerperspectiveAllowed() - Check if the debugger perspective is allowed and returns a
boolean value.

• validateSHMarker(String marker) - Checks if the given marker is allowed and returns a boolean
value. The String argument represents the syntax highlight marker to be checked. If you decide to filter certain
content types, you can also filter the syntax highlight options so that the content type is no longer present in the
Preferences options tree.

Extending Oxygen XML Editor with Plugins | 6

http://www.oxygenxml.com/InstData/Editor/Plugins/javadoc/ro/sync/exml/ComponentsValidator.html

Tip: The best way to decide what to filter is to observe the values the application passes when these callbacks
are called. You have to create an implementation for this interface which lists in the console all values received
by each function. Then you can decide on the values to filter and act accordingly.

Workspace Access Plugin
This plugin type allows the developer to contribute actions to the application main menu and toolbars, to create custom
views and to interact with the application workspace

Many complex integrations, like integrations with Content Management Systems (CMS) usually requires access to some
workspace resources like the toolbar, menus and to the opened XML editors. This type of plugin is also useful because
it allows you to make modifications to an opened editor's XML content.

The plugin must implement the interface
ro.sync.exml.plugin.workspace.WorkspaceAccessPluginExtension. The callback method
applicationStarted of this interface allows access to a parameter of type
ro.sync.exml.workspace.api.standalone.StandalonePluginWorkspace which in its turn allows
for API access to the application workspace.

The interface StandalonePluginWorkspace has three methods which can be called in order to customize the
toolbars, menus and views:

• addToolbarComponentsCustomizer - Contributes to or modifies existing toolbars. You can specify in the
associated plugin.xml descriptor additional toolbar IDs using the following construct:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin name="CustomWorkspaceAccess">
 <runtime>

 </runtime>

 <extension type="WorkspaceAccess"/>

<toolbar id="SampleWorkspaceAccessToolbarID" initialSide="NORTH"

initialRow="1"/>
</plugin>

The toolbar element adds a toolbar in the Oxygen XML Editor interface and allows you to contribute your own
plugin specific actions. The following attributes are available:

• id - unique identifier of the plugin toolbar;
• initialSide - specifies the place where the toolbar is initially displayed. The allowed values are NORTH

and SOUTH.
• initialRow - specifies the initial row on the specified side where the toolbar is displayed. For example the

main menu has an initial row of "0" and the "Edit" toolbar has an initial row of "1".

The ro.sync.exml.workspace.api.standalone.ToolbarInfo toolbar component information with
the specified id will be provided to you by the customizer interface. You will thus be able to provide Swing components
which will appear on the toolbar when the application starts.

• addViewComponentCustomizer - Contributes to or modifies existing views or contributes to the reserved
custom view. You can specify in the associated plugin.xml descriptor additional view IDs using the following
construct:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin name="CustomWorkspaceAccess">
 <runtime>

 </runtime>

Extending Oxygen XML Editor with Plugins | 7

http://www.oxygenxml.com/InstData/Editor/Plugins/javadoc/ro/sync/exml/plugin/workspace/WorkspaceAccessPluginExtension.html
http://www.oxygenxml.com/InstData/Editor/Plugins/javadoc/ro/sync/exml/workspace/api/standalone/StandalonePluginWorkspace.html
http://www.oxygenxml.com/InstData/Editor/Plugins/javadoc/ro/sync/exml/workspace/api/standalone/ToolbarInfo.html

 <extension type="WorkspaceAccess"/>

<view id="SampleWorkspaceAccessID" initialSide="WEST" initialRow="0"/>
</plugin>

The view element adds a view in the Oxygen XML Editor interface and allows you to contribute your own plugin
specific UI components. The following attributes are available:

• id - unique identifier of the view component.
• initialSide - specifies the place where the view is initially displayed. The allowed values are NORTH,

SOUTH, EAST and WEST.
• initialRow - specifies the initial row on the specified side where the view is displayed. For example the

Project view has an initial row of 0 and the Outline view has an initial row of 1. Both views are in the WEST
part of the workbench.

The ro.sync.exml.workspace.api.standalone.ViewInfo view component information with the
specified id will be provided to you by the customizer interface. You will thus be able to provide Swing components
which will appear on the view when the application starts.

• addMenuBarCustomizer - Contributes to or modifies existing menu components.

Access to the opened editors can be done first by getting access to all URLs opened in the workspace using the API
method StandalonePluginWorkspace.getAllEditorLocations(int editingArea). There are two
available editing areas: the DITA Maps Manager editing area where only DITA Maps are edited and the main editing
area. Using the URL of an opened resource you can gain access to it using the
StandalonePluginWorkspace.getEditorAccess(URL location, int editingArea)API method.
A ro.sync.exml.workspace.api.editor.WSEditor allows then access to the current editing page. Special
editing API is supported only for the Text
(ro.sync.exml.workspace.api.editor.page.text.WSTextEditorPage) page and the Author
(ro.sync.exml.workspace.api.editor.page.author.WSAuthorEditorPage) page.

In order to be notified when editors are opened, selected and closed you can use the API method
StandalonePluginWorkspace.addEditorChangeListener to add a listener.

Open Redirect Plugin
This type of plugin is useful for opening more than one file with only one open action.

For example when a zip archive or an ODF file or an OOXML file is open in the Archive Browser view a plugin of
this type can decide to open a file also from the archive in an XML editor panel. This file can be the document.xml
main file from an OOXML file archive or a specific XML file from a zip archive.

The plugin must implement the interface OpenRedirectExtension. It has only one callback: redirect(URL)
that receives the URL of the file opened by the Oxygen XML Editor user. If the plugin decides to open also other files
it must return an array of information objects (OpenRedirectInformation[]) that correspond to these files. Such
an information object must contain the URL that is opened in a new editor panel and the content type, for example
text/xml. The content type is used for determining the type of editor panel. A null content type allows auto-detection
of the file type.

Targeted URL Stream Handler Plugin
This type of plugin can be used when it is necessary to impose custom URL stream handlers for specific URLs.

This plugin extension can handle the following protocols: http, https, ftp or sftp, for which Oxygen XML usually
provides specific fixed URL stream handlers. If it is set to handle connections for a specific protocol, this extension will
be asked to provide the URL stream handler for each opened connection of an URL having that protocol.

To use this type of plugin, you have to implement the
ro.sync.exml.plugin.urlstreamhandler.TargetedURLStreamHandlerPluginExtension
interface, that provides the following methods:

Extending Oxygen XML Editor with Plugins | 8

http://www.oxygenxml.com/InstData/Editor/Plugins/javadoc/ro/sync/exml/workspace/api/editor/WSEditor.html
http://www.oxygenxml.com/InstData/Editor/Plugins/javadoc/ro/sync/exml/workspace/api/editor/page/text/WSTextEditorPage.html
http://www.oxygenxml.com/InstData/Editor/Plugins/javadoc/ro/sync/exml/workspace/api/editor/page/author/WSAuthorEditorPage.html

• boolean canHandleProtocol(String protocol)

This method checks if the plugin can handle a specific protocol. If this method returns true for a specific protocol,
the getURLStreamHandler(URL) method will be called for each opened connection of an URL having this
protocol.

• URLStreamHandler getURLStreamHandler(URL url)

This method provides the URL handler for the specified URL and it is called for each opened connection of an URL
with a protocol for which the canHandleProtocol(String) method returns true.

If this method returns null, the Oxygen URLStreamHandler is used.

To use this type of extension in your plugin, create an extension of TargetedURLHandler type in your plugin.xml
and specify the class that implements TargetedURLStreamHandlerPluginExtension:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin name="CustomTargetedURLStreamHandlerPlugin">
 <runtime>

 </runtime>

<extension type="TargetedURLHandler"
class="CustomTargetedURLStreamHandlerPluginExtension"/>

</plugin>

This extension can be useful in situations when connections opened from a specific host must be handled in a particular
way. For example, the Oxygen HTTP URLStreamHandler may not be compatible for sending and receiving SOAP using
the SUN Webservices implementation. In this case you can override the stream handler set by Oxygen for HTTP to use
the default SUN URLStreamHandler which is more compatible with sending and receiving SOAP requests.

public class CustomTargetedURLStreamHandlerPluginExtension
 implements TargetedURLStreamHandlerPluginExtension {

 @Override
 public boolean canHandleProtocol(String protocol) {
 boolean handleProtocol = false;
 if ("http".equals(protocol) || "https".equals(protocol)) {
 // This extension handles both HTTP and HTTPS protocols
 handleProtocol = true;
 }
 return handleProtocol;
 }

 @Override
 public URLStreamHandler getURLStreamHandler(URL url) {
 // This method is called only for the URLs with a protocol
 // for which the canHandleProtocol(String) method returns true (HTTP and
HTTPS)

 URLStreamHandler handler = null;

 String host = url.getHost();
 String protocol = url.getProtocol();
 if ("some_host".equals(host)) {
 // When there are connections opened from some_host, the SUN HTTP(S)
 // handlers are used
 if ("http".equals(protocol)) {

Extending Oxygen XML Editor with Plugins | 9

 handler = new sun.net.www.protocol.http.Handler();
 } else {
 handler = new sun.net.www.protocol.https.Handler();
 }
 }
 return handler;
 }
}

Lock Handler Factory Plugin
This type of extension is used for locking resources from a specific protocol.

It provides the following API:

• The interface LockHandlerFactoryPluginExtension.

You need to implement the following two methods:

• LockHandler getLockHandler()

Gets the lock handler for the current handled protocol. Might be null if not supported.

• boolean isLockingSupported(String protocol)

Checks if a lock handler can be provided for a specific protocol.

To use this type of extension in your plugin, create an extension of LockHandlerFactory type in your
plugin.xml and specify the class implementing LockHandlerFactoryPluginExtension:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin name="CustomLockHandler">
 <runtime>

 </runtime>

 <extension type="LockHandlerFactory"
class="LockHandlerFactoryPluginExtensionImpl"/>

</plugin>

How to
Different tutorials about how to implement complex plugins.

How to Write a CMS Integration Plugin

In order to have a complete integration between Oxygen XML Editor and any CMS you usually have to write a plugin
which combines two available plugin extensions:

• Workspace Access
• Custom protocol

The usual set of requirements for an integration between Oxygen XML Editor and the CMS are the following:

• Contribute to the Oxygen XML Editor toolbars and main menu with your custom Check Out and Check In actions:

• Check Out triggers your custom dialogs which allow you to browse the remote CMS and choose the resources
you want to open;

Extending Oxygen XML Editor with Plugins | 10

• Check In allows you to send back to the server the modified content.

You can use the Workspace Access plugin extension (and provided sample Java code) for all these operations.

• When Check Out is called, use the Oxygen XML Editor API to open your custom URLs (URLs created using your
custom protocol). It is important to implement and use a Custom Protocol extension in order to be notified when
the files are opened and saved and to be able to provide to Oxygen XML Editor the content for the relative references
the files may contain. Your custom java.net.URLStreamHandler implementation checks out the resource
content from the server, stores it locally and provides its content. Sample Check Out implementation:

 /**
 * Sample implementation for the "Check Out" method.
 *
 * @param pluginWorkspaceAccess The plugin workspace access (Workspace
Access plugin).
 * @throws MalformedURLException
 */
 private void checkOut(StandalonePluginWorkspace pluginWorkspaceAccess)
throws MalformedURLException {
 //TODO Show the user a custom dialog for browsing the CMS
 //TODO after the user selected the resource create an URL with a custom
protocol
 // which will uniquely map to the resource on the CMS using the URLHandler

 //something like:
 URL customURL = new URL("mycms://host/path/to/file.xml");
 //Ask Oxygen to open the URL
 pluginWorkspaceAccess.open(customURL);
 //Oxygen will then your custom protocol handler to provide the contents
for the resource "mycms://host/path/to/file.xml"
 //Your custom protocol handler will check out the file in a temporary
directory for example and provide the content from it.
 //Oxygen will also pass through your URLHandler if you have any relative
 references which need to be opened/obtained.
 }

Here is a diagram of the Check Out process:

Extending Oxygen XML Editor with Plugins | 11

Each phase is described below:

1. Browse CMS repository
2. User chooses a resource
3. Use API to open custom URL: mycms://path/to/file.xml
4. Get content of URL: mycms://path/to/file.xml
5. Get content of resource
6. Store on disk for faster access
7. Retrieve content from disk if already checked out
8. Retrieved content

• Contribute a special Browse CMS action to every dialog in Oxygen XML Editor where an URL can be chosen to
perform a special action (like the Insert a DITA Content Reference action or the Insert Image action). Sample
code:

 //Add an additional browse action to all dialogs/places where Oxygen
allows selecting an URL.
 pluginWorkspaceAccess.addInputURLChooserCustomizer(new
InputURLChooserCustomizer() {
 public void customizeBrowseActions(List<Action> existingBrowseActions,
 final InputURLChooser chooser) {
 //IMPORTANT, you also need to set a custom icon on the action for
situations when its text is not used for display.
 Action browseCMS = new AbstractAction("CMS") {
 public void actionPerformed(ActionEvent e) {
 URL chosenResource = browseCMSAndChooseResource();
 if (chosenResource != null) {
 try {
 //Set the chosen resource in the dialog's combo box chooser.

 chooser.urlChosen(chosenResource);
 } catch (MalformedURLException e1) {
 //
 }

Extending Oxygen XML Editor with Plugins | 12

 }
 }
 };
 existingBrowseActions.add(browseCMS);
 }
 });

When inserting references to other resources using the actions already implemented in Oxygen XML Editor , the
reference to the resource is made by default relative to the absolute location of the edited XML file. You can gain
control over the way in which the reference is made relative for a specific protocol like:

 //Add a custom relative reference resolver for your custom protocol.
 //Usually when inserting references from one URL to another Oxygen makes
 the inserted path relative.
 //If your custom protocol needs special relativization techniques then
 it should set up a custom relative
 //references resolver to be notified when resolving needs to be done.
 pluginWorkspaceAccess.addRelativeReferencesResolver(
 //Your custom URL protocol for which you already have a custom
URLStreamHandlerPluginExtension set up.
 "mycms",
 //The relative references resolver
 new RelativeReferenceResolver() {
 public String makeRelative(URL baseURL, URL childURL) {
 //Return the referenced path as absolute for example.
 //return childURL.toString();
 //Or return null for the default behavior.
 return null;
 }
 });

• Write the plugin.xml descriptor. Your plugin combines the two extensions using a single set of libraries. The
descriptor would look like:

<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin
 name="CustomCMSAccess"
 description="Test"
 version="1.0.0"
 vendor="ACME"
 class="custom.cms.CMSAccessPlugin">
 <runtime>
 <library name="lib/cmsaccess.jar"/>
 </runtime>
 <!--Access to add actions to the main menu and toolbars or to add custom
views.-->
 <!--See the
"ro.sync.sample.plugin.workspace.CustomWorkspaceAccessPluginExtension" Java
sample for more details-->
 <extension type="WorkspaceAccess"
 class="custom.cms.CustomWorkspaceAccessPluginExtension"/>
 <!--The custom URL handler which will communicate with the CMS
implementation-->
 <!--See the
"ro.sync.sample.plugin.workspace.customprotocol.CustomProtocolURLHandlerExtension"
 Java sample for more details-->
 <extension type="URLHandler"
 class="custom.cms.CustomProtocolURLHandlerExtension"/>
</plugin>

• Create a cmsaccess.jar JAR archive containing your implementation classes.

Extending Oxygen XML Editor with Plugins | 13

• Copy your new plugin directory in the plugins subfolder of the Oxygen XML Editor install folder and start
Oxygen XML Editor .

Class Loading Issues

It is possible that the Java libraries you have specified in the plugin libraries list conflict with the ones already loaded
by Oxygen XML Editor . In order to instruct the plugin to prefer its libraries over the ones used by Oxygen XML Editor
, you can add the following attribute on the <plugin> root
element:classLoaderType="preferReferencedResources" from the plugin.xml descriptor.

A Late Delegation Class Loader (the main class loader in Oxygen XML Editor) is a java.net.URLClassLoader
extension which prefers to search classes in its own libraries list and only if a class is not found there to delegate to the
parent class loader.

The main Oxygen XML Editor Class Loader uses as libraries all jars specified in the OXYGEN_INSTALL_DIR\lib
directory. Its parent class loader is the default JVM Class loader. For each instantiated plugin a separate class loader is
created having as parent the Oxygen XML Editor Class Loader.

The plugin class loader can be either a standard java.net.URLClassLoader or a
LateDelegationClassLoader (depending on the attribute classLoaderType in the plugin.xml). Its
parent class loader is always the Oxygen XML Editor LateDelegationClassLoader.

If you experience additional problems like the following:

java.lang.LinkageError: ClassCastException: attempting to cast
jar:file:/C:/jdk1.6.0_06/jre/lib/rt.jar!/javax/xml/ws/spi/Provider.classtojar:file:/D:/Program

 Files/Oxygen XML Editor

12/plugins/wspcaccess/../../xdocs/lib/jaxws/jaxws-api.jar!/javax/xml/ws/spi/Provider.class

 at javax.xml.ws.spi.Provider.provider(Provider.java:94) at
 javax.xml.ws.Service.<init>(Service.java:56)
..

The cause could be the fact that some classes are instantiated using the context class loader of the current thread. The
most straightforward fix is to write your code in a try/finally statement:

 ClassLoader oldClassLoader = Thread.currentThread().getContextClassLoader();

 try {
 //This is the implementation of the WorkspaceAccessPluginExtension plugin
 interface.
 Thread.currentThread().setContextClassLoader(
 CustomWorkspaceAccessPluginExtension.this.getClass().getClassLoader());

 //WRITE YOUR CODE HERE
 } finally {
 Thread.currentThread().setContextClassLoader(oldClassLoader);
 }

How to Write A Custom Protocol Plugin

For creating a custom protocol plugin, apply the following steps:

1. Write the handler class for your protocol that implements the java.net.URLStreamHandler interface.

Be careful to provide ways to correct and uncorrect the URLs of your files.

2. Write the plugin class by extending ro.sync.exml.plugin.Plugin.

3. Write the plugin extension class that implements the
ro.sync.exml.plugin.urlstreamhandler.URLStreamHandlerPluginExtension interface.

Extending Oxygen XML Editor with Plugins | 14

http://www.oxygenxml.com/InstData/Editor/Plugins/javadoc/ro/sync/exml/plugin/Plugin.html
http://www.oxygenxml.com/InstData/Editor/Plugins/javadoc/ro/sync/exml/plugin/urlstreamhandler/URLStreamHandlerPluginExtension.html

It is necessary that the plugin extension for the custom protocol implements the
URLStreamHandlerPluginExtension interface. Without it, you cannot use your plugin, because Oxygen
XML Editor is not able to find the protocol handler.

You can choose also to implement the URLChooserPluginExtension interface. It allows you to write and
display your own customized dialog for selecting resources that are loaded with the custom protocol.

An implementation of the extension URLHandlerReadOnlyCheckerExtension allows you to:

• mark a resource as read-only when it is opened
• switch between marking the resource as read-only and read-write while it is edited

It is useful when opening and editing CMS resources.

4. Write the plugin.xml descriptor.

Remember to set the name of the plugin class to the one from the second step and the plugin extension class name
with the one you have chosen at step 3.

5. Create a .jar archive with all these files.

6. Install your new plugin in the plugins subfolder of the Oxygen XML Editor install folder.

Installation
In the directory where Oxygen XML Editor is installed there exists a directory called plugins that contains all the
available plugins. In order for Oxygen XML Editor to use the new functionality you provided, follow the next steps:

1. In the plugins folder create a subfolder to store the plugin files.

2. Put in this new folder the plugin descriptor file plugin.xml, the Java classes of the plugin and the other files that
are referenced in the descriptor file.

3. Restart Oxygen XML Editor .

Example - A Selection Plugin
The following plugin is called UppercasePlugin and is an example of selection plugin. It is used in Oxygen XML
Editor for capitalizing the characters in the current selection. This example consists of two Java classes and the plugin
descriptor:

• UppercasePlugin.java:

package ro.sync.sample.plugin.uppercase;

import ro.sync.exml.plugin.Plugin;
import ro.sync.exml.plugin.PluginDescriptor;

public class UppercasePlugin extends Plugin {
 /**
 * Plugin instance.
 */
 private static UppercasePlugin instance = null;

 /**
 * UppercasePlugin constructor.
 *
 * @param descriptor Plugin descriptor object.
 */
 public UppercasePlugin(PluginDescriptor descriptor) {
 super(descriptor);

Extending Oxygen XML Editor with Plugins | 15

http://www.oxygenxml.com/InstData/Editor/Plugins/javadoc/ro/sync/exml/plugin/urlstreamhandler/URLChooserPluginExtension.html
http://www.oxygenxml.com/InstData/Editor/Plugins/javadoc/ro/sync/exml/plugin/urlstreamhandler/URLHandlerReadOnlyCheckerExtension.html

 if (instance != null) {
 throw new IllegalStateException("Already instantiated !");
 }
 instance = this;
 }

 /**
 * Get the plugin instance.
 *
 * @return the shared plugin instance.
 */
 public static UppercasePlugin getInstance() {
 return instance;
 }
}

• UppercasePluginExtension.java:

package ro.sync.sample.plugin.uppercase;

import ro.sync.exml.plugin.selection.SelectionPluginContext;
import ro.sync.exml.plugin.selection.SelectionPluginExtension;
import ro.sync.exml.plugin.selection.SelectionPluginResult;
import ro.sync.exml.plugin.selection.SelectionPluginResultImpl;

public class UppercasePluginExtension implements SelectionPluginExtension {
 /**
 * Convert the text to uppercase.
 *
 *@param context Selection context.
 *@return Uppercase plugin result.
 */
 public SelectionPluginResult process(SelectionPluginContext context) {
 return new SelectionPluginResultImpl(
 context.getSelection().toUpperCase());
 }
}

• plugin.xml:

<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin
 name="UpperCase"
 description="Convert the selection to uppercase"
 version="1.0.0"
 vendor="SyncRO"
 class="ro.sync.sample.plugin.uppercase.UppercasePlugin">
 <runtime>
 <library name="lib/uppercase.jar"/>
 </runtime>
 <extension type="selectionProcessor"
 class="ro.sync.sample.plugin.uppercase.UppercasePluginExtension"/>
</plugin>

Extending Oxygen XML Editor with Plugins | 16

Index

D

Develop an <oXygen/> plugin 3, 15
example - UppercasePlugin 15
introduction 3

E

Extend Oxygen with plugins 3, 4, 5, 6, 8, 10, 14, 15
implement plugin 3, 4, 5, 6, 8, 10, 14, 15

CMS integration plugin 10
components validation plugin 6
custom protocol plugin 5, 8, 10

Extend Oxygen with plugins (continued)
implement plugin (continued)

document plugin 5
general plugin 4
how to install a plugin 15
how to write a custom protocol plugin 14
resource locking custom protocol plugin 5
selection plugin 4

requirements 3

W

Workspace Access 7

 Index | 17

	Contents
	Extending Oxygen XML Editor with Plugins
	Introduction
	General configuration of an Oxygen XML Editor plugin
	Types of plugins
	General Plugin
	Selection Plugin
	Document Plugin
	Custom Protocol Plugin
	Resource Locking Custom Protocol Plugin
	Components Validation Plugin
	Workspace Access Plugin
	Open Redirect Plugin
	Targeted URL Stream Handler Plugin
	Lock Handler Factory Plugin

	How to
	How to Write a CMS Integration Plugin
	Class Loading Issues

	How to Write A Custom Protocol Plugin

	Installation
	Example - A Selection Plugin

	Index

